
CraFT user’s guide

Hervé Moulinec

December 12, 2014

1 Introduction

In this chapter, one will describe how to run CraFT. That means what sort of input
data CraFT needs, how to specify it to CraFT, what sort of output data are to be
created, and how these data (input and output) are organized.

To describe the mechanical problem she/he wants to run, the user must:

• describe the geometry of the microstructure via an image telling which phase
each pixel belongs to

• describe the mechanical behavior of each phase, this is done in CraFT via
two files:

- a file describing all materials present in the microstructure: the type of
behavior they obey (linear elasticity, elastic-perfectly plastic behavior,
...), and their peculiar mechanical properties (e.g. Young’s modulus and
Poisson coefficient in the cas of isotropic linear elasticity)

- a file telling for each phase which material it belongs to, and how the
material is oriented in that phase

• describe the loading conditions,

• tell what outputs the user wants to store at the end of the computation, and
the name she/he wants to give to them

• give some tuning parameters of the method:

- how to choose the reference material C0

- precision required for convergence of the iterative process

2 CraFT Usage

The simplest way to run CraFT is to run it interactively by typing:

craft -i

(with -i “interactive mode” option) or simply by:

craft

(without any options).

Then, CraFT asks 7 questions to the user:

• the name of an image file describing the microstructure

• the name of a file describing the phases of the microstructure

• the name of a file describing the materials the phases are made of

• the name of a file describing the loading conditions

• the name of a file in which the user specify the outputs she/he wants

• how to choose the “reference material” C0

• the required accuracy (the accuracy at which iterative processes for conver-
gence have to be stopped)

Each of this specification will be detailed in next sections.

If the user prefers to run CraFT in a single line of command, she/he can user -f
option followed by the name of a file describing the inputs required by CraFT:

craft -f inputfile

See section 3.1, page 4 for more details on input file format.

An other possibility, is to specify every input parameters separately by using ad-
equate input options: -c -p -m -l -o -C -e

These options must be used together. Invoking them exclude use of -f or -i
options (and vice versa).

Table (2.1) summarizes all possible options of craft command.

-h displays help
-v verbose mode (default: non verbose)
-V displays craft version number
-i interactive mode: inputs are asked to the user

(it is the default mode)

-f <file> read inputs in file <file>

-c <file> microstructure is given in file <file>
-p <file> phases are described in file <file>
-m <file> materials are described in file <file>
-l <file> loading conditions are described in file <file>
-o <file> outputs are described in file <file>
-C <line> C0 is specified in command line <line>
-e <accuracy> accuracy required in <accuracy>

(<accuracy> can be either a single value or two
values separated by a comma for accuracy
required for stress divergence and for accuracy
required for loading conditions)

-n <threads> number of threads to be used (in case of OpenMP compiled version)

Table 2.1: CraFT options

3

3 Entering specifications of a given problem

3.1 Input file

The input specifications of a problem can be given to CraFT in a file, the name of
which is entered by -f option.

Input file can:

• either contain exactly what should have been answered to CraFT when in-
teractively called, in the same order,

• or can use keywords to enter specifications; in that case the different speci-
fications can be entered in any order.

The two formats for entering specs can not be mixed together.

In both cases, a line beginning with a # character is considered as a comment line.
An empty line (i.e. a line containing nothing or just white spaces) is ignored.

Format of input file without keywords:

In format without keywords, spec have to be entered in the strictly same order as
in interactive mode:

• the name of an image file describing the microstructure

• the name of a file describing the phases of the microstructure

• the name of a file describing the materials the phases are made of

• the name of a file describing the loading conditions

• the name of a file in which the user specify the outputs she/he wants

• how to choose the “reference material” C0

• the required precision (i.e. the accuracy at which iterative processes for con-
vergence have to be stopped)

An example of an input file without keywords is given in annex A.2, page 20.

Format of input file with keywords:

An input file using keywords contains lines beginning with one of the available
keywords (summarized in table 3.1). The keyword is followed by a = charac-
ter, and then by the specification itself. Case distinction is ignored in keywords.
Blanks are ignored.

keywords arguments

microstructure the name of an image file describing the microstructure
phases the name of a file describing the phases of the microstructure
materials the name of a file describing the materials the phases are made of
loading the name of a file describing the loading conditions
output the name of a file in which the user specify the outputs she/he wants
C0 how to choose the “reference material” C0

precision the required precision

Table 3.1: Keywords available in input files

An example of an input file with keywords is given in annex A.3, page 21.

For keywords accepting a file name as argument (i.e.: microstructure , phases,
materials , loading and output), it is also possible to directly enter the
content of the file into the input file. In that case, the keyword is followed by the
content of the file enclosed by braces ({ and }).

Example A.4 in page 22 illustrates this case.

3.2 File describing the microstructure

The microstructure of the problem treated is described by an image file in CraFT
format or in “simple legacy” VTK format.

In both format, each pixel of a microstructure image must contain the index of the
phase it belongs to.

(see section (4.1), page 15, for more details on digital images).

See www.vtk.org/VTK/img/file-formats.pdf for details on simple legacy
VTK file format.

3.3 File describing the phases

Phases in the microstructure are described in an ascii file, in which every phase
in the microstructure is described by a line. First column gives the number of
the phase, second column gives the number of the material the given phase bis
composed of, the next three colums give the orientation of the material in the
given phase by three Euler angles φ1,Φ, φ2 (see figure 3.2 for details).

Empty lines and lines beginning with # character are ignored by CraFT.

Remarks:

5

#---
phase material phi1 Phi phi2
#---

0 0 3.8135413 1.8862685 1.1466009
1 0 2.7503878 1.7827771 4.2127749
2 0 2.0567105 1.6476569 3.3482159
3 0 4.3410043 1.1427749 3.907608
4 0 3.5043039 1.4998321 4.8580132
5 0 4.4619361 1.6873032 6.1930471
6 0 4.028708 2.07412 5.1103068
7 0 2.2259622 1.4106619 1.8815486
8 0 1.0618022 2.0650686 0.89195132
9 0 4.6502682 1.5093459 5.475368

Figure 3.1: example of file describing the phases of a microstructure. All of the 10
phases are composed of the same material (whose id is 0) but do have different
crystalline orientations.

• A given phase is uniquely described by an id number.

• Phases are not necessarily numbered from 0 to n: phase file has just to de-
scribe every phase present in image file of the microstructure, however the
phases are numbered in the image.

• Phases in phase file can be more numerous that actual phases in microstruc-
ture image: the only prescription is that every phase in the microstructure
must be described in phase file.

Figure 3.2: Euler angles with Bunge notations

3.4 File describing the materials

A unique file describes all phases of the microstructure. This is an ascii file com-
posed of paragraphs each of one describing a given material.

Each paragraph begins with a line telling the id number of the material and the id
number of the constitutive law that the material obeys.

6

id constitutive law

0 void

1 isotropic linear elasticity
2 elastic perfectly plastic behavior (with isotropic elasticity)

3 anisotropic linear elasticity

Table 3.2: CraFT identification numbers of constitutive laws

The next lines give the value of the parameters of the constitutive law; their num-
ber, types and order depending on the constitutive law and how it has been imple-
mented. For example, for an isotropic linear elastic behavior just two parameters
has to be entered: Young’s modulus and Poisson coefficient and for an elastic per-
fecftly plastic behavior, three parameters are required: Young’s modulus, Poisson
coefficient and yield stress.

Table 3.2 summarizes the ids of the different constitutive laws which has been
implemented till now.

Details of parameters to be entered for each behavior are given in appendix (B).

Empty lines are ignored and lines beginning with # character are considered as
commentar by CraFT in material description files.

3.5 Loading specifications

Files specifiying loading conditions consist in two parts:

• loading condition (prescribed stress, prescribed strain or prescribed direc-
tion of stress)

• one or more lines describing every loading step(s)

3.5.1 loading condition

CraFT enables three different loading conditions:

- prescribed macroscopic strain : macroscopic strain E is imposed

- prescribed macroscopic stress: macroscopic strain σ is imposed

- prescribed direction of stress + prescribed strain in that direction: macro-
scopic stress σ has to be colinear to prescribed direction of stress σ0 and
the product of macroscopic stress and macroscopic strain, i.e. σ : E , is
prescribed.

7

Loading specification file begins with a line containing a letter:

- D : prescribed macroscopic strain

- C : prescribed macroscopic stress

- S : prescribed direction of stress

3.5.2 Loading steps

Loading steps may be specified step-by-step: a given line describes one given
step, or implied loops may be used to specify several steps in one line.

“Step-by-step” specification

A basic line of loading step specification comprises 8 values:

- the time value (for example in seconds), hereafter called t

- the 6 components of a symmetrical 2d order tensor, hereafter called d sup-
posed to be entered in the following order: 11, 22, 33, 12, 13, 23

- a scalar, hereafter called k

k and d do have different meaning depending on loading condition:

- in the case of prescribed macroscopic strain : macroscopic strain E at time t
is given by E = k.d

- in the case of prescribed macroscopic stress: macroscopic stress Σ at time t
is given by Σ = k.d

- in the case of prescribed direction of stress, the macroscopic stress must be
colinear to d (in other words: d is the direction of stress) and the product of
the macroscopic strain by d must be equal to k: E : d = k

Important note: CraFT implies that at time t = 0, loading modulus k is null and
direction d is useless.

For example:

#-------------------------------------
prescribed strain
D
#-------------------------------------
loading
#t direction k
11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -
0.1 1. 0. 0. 0. 0. 0. 2.
#

8

In this file, macroscopic strain is prescribed, the loading consists in one step at
time: t = 0.1s, the macroscopic strain E must be equal to (E11, E22, E33, E12, E13, E33) =
(2, 0, 0, 0, 0, 0)

Implied loop specification

In the case of a monotonic loading, it can be tedious to enter the lines of every
required time steps, where the time values t and the loading modulus k change
regularly from one step to the next.

CraFT proposes an implied loop notation enabling to specify several time steps in
one line.

Implied loops are specified at the beginning of a line (before time value specifica-
tion). Two notations are possible:

- an integer value enclosed by : characters specifying the number of implied
loops between the time step of the preceding line (not inclueded) and the
time step of the current line (included),

- a float value enclosed by % characters specifying the implied time steps be-
tween the time of the preceding line and the time step of the current line.

The time values t and the “loading modulus” k of the so-created loading steps are
supposed to be linearly interpolated between their value in previous line ant in
the current line; the directions d of the so-created loading steps are supposed to
equal to the one in the current line.

For example:

#-------------------------------------
prescribed strain
D
#-------------------------------------
loading
t direction k
11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -
:10: 1. 1. 0. 0. 0. 0. 0. 10.
#

will create 10 loading steps form t = 0.1 to t = 1., with a modulus k varying form
k = 1. to k = 10. (as the previous time step is implicitely considered as t = 0 and
k = 0).

It would have been equivalently written as:

#-------------------------------------
prescribed strain
D
#-------------------------------------
loading

9

t direction k
11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -

0.1 1. 0. 0. 0. 0. 0. 1.
0.2 1. 0. 0. 0. 0. 0. 2.
0.3 1. 0. 0. 0. 0. 0. 3.
0.4 1. 0. 0. 0. 0. 0. 4.
0.5 1. 0. 0. 0. 0. 0. 5.
0.6 1. 0. 0. 0. 0. 0. 6.
0.7 1. 0. 0. 0. 0. 0. 7.
0.8 1. 0. 0. 0. 0. 0. 8.
0.9 1. 0. 0. 0. 0. 0. 9.
1.0 1. 0. 0. 0. 0. 0. 10.

or:

#-------------------------------------
prescribed strain
D
#-------------------------------------
loading
t direction k
11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -
%0.1% 1. 1. 0. 0. 0. 0. 0. 10.
#

as implied-time step is equal to 0.1, the number of implied loops between t = 0
(preceding line) and t = 1 (current line) is 1/0.1 = 10

Examples of loading file are given in C.1.

3.6 Output specifications

Output specification files contain lines beginning with a keyword, which can be
composed of several words, followed by a = and one or several arguments.

Availables keywords are:

- generic name

- xxx image (where xxx is the name of a mechanical variable (stress, strain,
...) to be stored as an image

- xxx moment (where xxx is the name of a mechanical variable (stress, strain,
...) whose first and second moments have to be calculated and stored for
each phase.

10

3.6.1 keyword: generic name

Argument following generic name is to be the lexical root of the names of all
output files. For example, if output spec file contains line:

generic name=foo

craft will build a foo.res file to contain macroscopic results at each steps of the
loading path, a foo.perf file to display statistics about execution, etc ...

3.6.2 keyword: xxx image

If the argument of keyword xxx image is yes (or if no argument is given), im-
age(s) of xxx field are to be created. If argument is no, no images are created. xxx
is the name of a mechanical variable; it can be common to all possible mechanical
behaviors; i.e. strain and stress, or it can be specific to a given behavior.

A list of variables available for image storing is given for every behavior (see
appendix B).

If the concerned mechanical variable is a second order tensor, an image of each
6 components of the tensor field are to be created; the name of these images is
build with the “generic name” followed by t= and the time (in the loading path)
at which the image has been captured, followed by the name of the variable, and
finally by the number of the component (11, 22, 33, 12, 13, or 23).

For example, the following output spec file:

generic name=foo
stress image=yes

will create images of the 6 components of the stress field at the last time step of
the loading path (let us say, at time 1s):

foo t=01.00000000e+00 stress11.ima,

foo t=01.00000000e+00 stress22.ima,

foo t=01.00000000e+00 stress33.ima,

foo t=01.00000000e+00 stress12.ima,

foo t=01.00000000e+00 stress13.ima,

foo t=01.00000000e+00 stress23.ima.

If just yes is given argument, the image(s) is stored at the last step of the loading
path.

Moreover one can give the time(s) at which images are to be stored by entering a
list of time specifications separated by commas.

11

Time values can be entered either by their actual value (in seconds) or by the
number of their step in the loading path, in which case this number is entered as
an integer value preceded by an at sign character (@).

The time value of the first step of the loading path can be specified by firt or by
begin (or by its actual time value).

The time value of the last step of the loading path can be specified by last or
end (or by its actual time value).

When two time specifications are separated by a colon character (:), images are to
be stored at each step of the loading path between these two extreme time values.
If a second colon character is entered and followed by a time value, this last value
is taken as a time step.

Examples:

strain image = yes 10.,20, 30.:40.:@2, 45.:@100, @200

requires to store images of the strain tensor at times: t = 10s, t = 20s, once at
every two time steps between t = 30s and t = 40s, at every time steps between
t = 45s and the 100th steps, and at the 200th step of the loading path.

stress image=yes first:last

requires to store images of the stress tensor at every steps of the loading path (i.e.
from the fisrt step to the last one).

stress image=yes 180.:last:@2

requires to store images of the stress tensor once at every two steps, from time
t = 180s to the last step of the loading path.

3.6.3 keyword: im format

The format of the images which have to be stored as results of the computation
can be specified by keyword im format.

• im format=vtk

simple legacy VTK file format is prescribed

• im format=i3d

CraFT image format is prescibed

• im format=all

every image to be stored will be saved under both formats (VTK and i3d).

12

3.6.4 keyword: xxx moment

First and second moments of xxx variable has to be stored during calculation.

The syntax is similar to the one for image storage. The only difference, is that a
sole file will be created for each variable whose moments are required to be stored,
even if several times for storage are given.

Example:

generic name=foo
strain moment = yes 10.:20

will create a file named foo strain.mom containing the first and second mo-
ments of the strain field in every phase, at every time steps between 10s and 20s.

3.7 Specification of reference material CO

The reference material C0 can be chosen:

- either automatically by entering: auto keyword (recommended)

- or explicitely by entering: param keyword followed the two Lamé coeffi-
cient of C0 (C0 is an istropic linear elastic material).

3.8 Required accuracy

The numerical method implemented in CraFT use an iterative process at each step
of the loading path. Convergence is assumed to be reached when:

1 the modulus of the divergence of the stress field is lower than a given value,

2 the loading conditions are verified.

The modulus of the divergence of the stress field is computed in Fourier space as:

‖div(σ)‖ =

√∑
ξ

|ξ.σ̂(ξ)|2

and is compared to a value entered by the user. Convergence is assumed to be
reached when:

‖div(σ)‖ < required accuracy for divergence of stress

Basically, the iterative process enables to prescribe macroscopic strain by forcing
the strain field in Fourier space at null frequency to a given value.

Nevertheless, it is possible to prescribe macroscopic stress or to prescribe the di-
rection of macroscopic stress via a secondary iterative scheme which proposes,

13

at each iteration, a new macroscopic strain which is then imposed to the null fre-
quency of the strain field. Thus, it has to be verified, at each iteration, if prescribed
loading conditions has been reached or not.

In the case of prescribed macroscopic stress, the iterative scheme is the following:

Ei+1 = Ei + C0
−1 : (Σ− < σi >)

where:

• Ei is the macroscopic strain at iteration i

• Σ is the prescribed macroscopic stress

• < σi > is the overall mean of the stress field at iteration i

• C0
−1 is the stiffness of reference material C0

and the convergence condition is:

‖Σ− < σi > ‖
‖Σ‖

< required accuracy for loading conditions

In the case of prescribed direction of macroscopic stress, the iterative scheme is
the following:

C0
−1 : Ei+1 − ki+1Σ0 = C0

−1 : Ei− < σi >
Ei+1 : Σ0 = E(t)

where:

• Σ0 is the prescribed direction of macroscopic stress

• E(t) is the prescribed macroscopic strain in Σ0 direction (it is a scalar),

• < σi > is the overall mean of the stress field at iteration i

• ki+1 is a scalar to be computed

and the convergence condition is:

‖ki : Σ0− < σi > ‖
‖ki : Σ0‖

< required accuracy for loading conditions

So CraFT user has to enter two accuracy values for convergence of equilibrium
(divergence of stress) and for convergence of loading condition; these two values
has to be entered separated by a comma.

If the user enter just one value, it is applied to the two required accuracies.

14

4 Lexicon

In this section, we give the definition of some words or concepts often used all
along this document, in the precise meaning that we have given to them.

4.1 Digital images

4.1.1 Generalities

A digital image is a set of physical points, called “pixels” in 2d and “voxels” in 3d
(although the author of this document does not like this word and prefer to use
“pixel” in 2d and in 3d), placed at the nodes of a regular grid of the space.

Thus, pixels are organized as a set of n1×n2×n3 points, each pixel being separated
from its previous neighbour along the k-th direction (k = 1, 2, 3) by a given pk
vector.

Remark: a 2d image can be considered as a 3d image whose third direction has a
1 pixel depth (n3 = 1).

Hence, the volume described in that way is a parallelepiped (and not necessarily
a cube nor even a rectangular parallelepiped as it is usually defined) as pk (k =
1, 2, 3) vectors are not necessarily orthogonal nor having same magnitude.

With the definition of the position s = (s1, s2, s3) of the first pixel in the list, the
coordinate in the euclidian space x = (x1, x2, x3) of each pixel can be got from its
position in the digital image i = (i1, i2, i3) (with i1 = 0, 1, ..., n1−1 , i2 = 0, 1, ..., n2−
1 , i3 = 0, 1, ..., n3 − 1

x = s +
∑

k=1,2,3 ik × pk

xl = sl +
∑

k=1,2,3 ik × pkl (k = 1, 2, 3)

(pkl being the l-th component of pk vector).

The data stored at each pixel could theoritically be of any kind: a scalar value, an
integer value, a vector, a tensor, ...

In practice, it depends on the way images are implemented.

4.1.2 CraFT format of images

CraFT code proposes a C-structure of images called CraftImage whose pixels
can contain:

• an integer value: int

• a scalar floating point: float

• a scalar floating point in double precision: double

• a vector (as a 3 dimension array in double precision): double [3]

• a symmetrical 2d order tensor (as a 6 dimension array in double precision):
double [6]

• an array of double precision values of any dimension

CraFT proposes a format for image file which is (unfortunately) slightly different:
values stored in pixels can only be scalars of type:

• signed 1-byte integer (char),

• unsigned 1-byte integer (unsigned char),

• signed integer (int),

• unsigned integer (unsigned int),

• floating point in simple precision (float)

• floating point in double precision (double)

That is why a CraftImage 2d order tensor image is stored into 6 different files,
each one containing a given component of the tensor.

TO DO: homogenize image representations in CraFT between inside
code and file format.

An CraFT image file is binary file consisting in a header (the size of which de-
pends on the case= and in the set of pixel values (binary in IEEE 754 arithmetic).

The header comprised:

• 10 bytes describing the type of pixels the image contains:

HM2RS : floating values in single precision (coded in 4 bytes)

HM2RD : floating values in double precision (coded in 8 bytes)

HM2RI : integer values

HM2RUI : unsigned integer values

HM2RC : character values

HM2RUC : unsigned character values

16

HMRS : old (obsolete?) format for floating values in simple precision

• 20 bytes giving endianness of data values:

Big Endian : data values are coded in big endian format

Little Endian : data values are coded in little endian format

Following data in the header are supposed to be coded following the endi-
anness which has been declared here.

• header size (in bytes) : only in old HMRS format total size of the header

• n1 n2 n3 : the number of pixels in the 3 directions, given as integer values
coded in binary

• s1 s2 s3 : the coordiantes of the first pixels of the image, given as double
precision real values coded in binary

• p11 p12 p13 p21 p22 p23 p31 p32 p33 : the 3 components of the step vectores along
the 3 directions, given as double precision real values coded in binary

(Caution: In the case of old HMRS format, stpe vectors are supposed to be
orthogonal, and just p11 p22 p33 are to be written here). the 3 components of
the step vectores along the 3 directions, given as double precision real values
coded in binary

Thus, except in the case of HMRS old format, the header comprises 138 bytes.

The pixel values are stored one after each other from the “first pixel” (i.e. the pixel
with coordinates x = (s1, s2, s3), i = (0, 0, 0)) to the last, i1 coordinate varying the
fastest, and i3 the slowest. In other words, pixels are stored in the following order:
i = (0, 0, 0), i = (1, 0, 0), i = (2, 0, 0), .. i = (n1 − 1, 0, 0), i = (0, 1, 0), i = (1, 1, 0),
i = (2, 1, 0), .. i = (n1 − 1, 1, 0), i = (0, 2, 0), i = (1, 2, 0), ... i = (n1 − 1, 2, 0), ...
i = (n1 − 1, n2 − 1, 0), i = (0, 0, 1), i = (1, 0, 1), ... i = (n1 − 1, n2 − 1, n3 − 1)

What some people could call Fortran-like indexing...

4.1.3 Simple legacy VTK file format

CraFT is able to read and write images formatted in simple legacy VTK format
with:

- “STRUCTURED POINTS” dataset

- pixels containing scalar values coded as float number.

Full details on simple legacy VTK format are given in:

www.vtk.org/VTK/img/file-formats.pdf

(this document being taken from the VTK User’s Guide (published by Kitware
Inc)).

In few words:

17

- VTK files consist in a man-readable header and a set of pixels,

- the pixels of a VTK file image are placed along the 3 axis of the cartesian
grid (in other words: p1 = (sx, 0, 0) , p2 = (0, sy, 0) , p3 = (0, 0, sz) where sx,
sy, sz are the VTK spacings in the 3 directions,

- pixels can be stored either in ASCII or in binary format,

- pixels are stored in the same order as in CraFT format: pixels are ordered
with x1 increasing fastest, then x2, then x3,

- CraFT supposes that data in VTK files are represented in IEEE 754 floating
point standard with big-endian byte ordering (to the opinion of the author
of CraFT User’s Guide, VTK format is not perfectly clear on how binary data
has to be represented).

The main advantage of using VTK file format instead of Craft format is its much
more common use. For example, images of this format can be visualized via well
known 3D visualization programs such as Paraview and Mayavi2.

An example of a simple Legacy VTK image in ascii is given in 4.1

4.1.4 Conversion between CraFT format and simple legacy VTK file format

Two programs are available with craft distribution to convert from one format to
the other:

• i3dtovtk : to convert from so-called“i3d” CraFT format to VTK format
(either in binary or in ASCII format)

• vtktoi3d : to convert from VTK format to so-called“i3d” CraFT format

Type i3dtovtk -h and vtktoi3d -h in a unix terminal to get more details on
how to use these programs.

18

vtk DataFile Version 3.0
craft output
ASCII
DATASET STRUCTURED_POINTS
DIMENSIONS 32 32 1
ORIGIN 0.000000 0.000000 0.000000
SPACING 0.031250 0.031250 1.000000
POINT_DATA 1024
SCALARS scalars float
LOOKUP_TABLE default
0 0
0 0
0 0
0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 2 2 2 2 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 2 2 2 2 2 2 2 2 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 2 2 2 2 2 2 2 2 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 2 2 2 2 2 2 2 2 2 2 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 2 2 2 2 2 2 2 2 0
0 0 0 2 2 2 2 2 2 2 2 2 0
0 0 0 0 0 2 2 2 2 2 0
0 0
0 0

Figure 4.1: An example of a simple Legacy VTK image in ascii. This image con-
tains two disks which are almost visible in the text file (although the image being
seen upside down).

19

Appendix A How to run CraFT

Following examples shows different ways to run craft for the following problem:

- microsctructure described by image file: micro01.ima

- phases in microstructure described by file:micro01.phases

- material(s) in microstructure described by file: micro01.mat

- loading conditions described by file: traction.dat

- required ouptuts described by file: micro01.output

- reference material C0 chosen by CraFT

- required precision: 1.10−4

A.1 Case 1: interactive call

craft -i
Enter the name of the image of the characteristic function: micro01.ima
Enter the name of the file describing the phases: micro01.phases
Enter the name of the file describing the materials: micro01.mat
Enter the name of the file describing the loading conditions : traction.dat
Enter the name of the file describing required outputs: micro01.output
Enter C0:

auto
param lb0 mu0
matrix 21 coef Cij

auto
Enter required precision: 1.E-4

A.2 Case 2: inputs are described by configuration file
micro01a.in in “without keywords” format

CraFT can be run using micro01a.in configuration file:

#---
HM 30/12/2010
file: micro01a.in
#
#---
image file describing the microstructure:
micro01.ima

file describing the different phases in the
microstructure:
micro01.phases

file describing the mechanical behavior of
the different components of the material:
micro01.mat

file describing loading conditions:
traction.dat

file describing the selected outputs:
micro01.output

choice of C0:
auto

required precision:
1.E-4
#---

by typing following command line:

craft -f micro01a.in

or, alternately, by typing:

craft < micro01a.in

A.3 Case 3: inputs are described by configuration file
micro01b.in in “keywords format”

CraFT can be run using micro01b.in configuration file:

#--
HM 30/12/2010
file: micro01b.in
#
#--
file describing the mechanical behavior of the
different components of the material:
Materials=micro01.mat

file describing the different phases in the
microstructure:
Phases=micro01.phases

21

image file describing the microstructure:
Microstructure=micro01.ima

file describing loading conditions:
loading=traction.dat

choice of C0:
C0=auto

required precision:
precision = 1.E-4

file describing the selected outputs:
output = micro01.output

#--

by typing following command line:

craft -f micro01b.in

A.4 Case 4: inputs are described by configuration file
micro01c.in in “keywords format”, loading and output
specified directly in the input file (instead of being described
by files

#--
HM 30/12/2010
input file micro01c.in
#--
file describing the mechanical behavior of the
different components of the material:
Materials=micro01.mat

file describing the different phases:
Phases=micro01.phases

image file describing the microstructure:
Microstructure=micro01.ima

loading conditions:
loading {
S
1. 1 0 0 0 0 0 1.
}

22

choice of C0:
C0=auto

required precision:
precision = 1.E-4

file describing the selected outputs:
output {
generic name=micro01c
stress image = yes
strain image = no
}
#--

A.5 Case 5: problem specifications described one by one in a
command line

craft -c micro01.ima -p micro01.phases -m micro01.mat \
-l traction.dat -o micro01.output -C auto -e 1.E-4

23

Appendix B File describing materials in CraFT

The first line of every given material specification consists in the identifier of this
material (it is a integer value defining uniquely a given material) followed by the
number describing its behavior (see table 3.2).

B.1 How to describe a void material

Behavior identifier: 0

No parameters to be entered for void materials.

Example:

#---
material nr 17 is a void material
17 0
#no further parameters are required
#---

B.2 How to describe an isotropic linear elastic material

Behavior identifier: 1

Isotropic linear elasticity in CraFT is described by two parameters entered, one
per line, in that order:

• Young’s modulus

• Poisson coefficient

Example:

#---
material nr 32 is an isotropic linear elastic material
32 1
Young’s modulus:
10.
Poisson coefficient:
0.23
#---

B.3 How to describe an anisotropic linear elastic material

Behavior identifier: 3

A linear elastic (anisotropic or isotropic) material in CraFT is specified by an in-
teger value in the range 0 to 4 to choose how the material specification will be
entered, followed by the material specification.

The different possible cases are:

- case 0: the full stiffness matrix has to be entered

- case 1: isotropic case

- case 2: cubic symmetry

- case 3: hexagonal symmetry

- case 4: orthotropic symmetry

B.3.1 case 0: stiffness matrix entirely specified

The stiffness matrix has to be entered by its upper triangular part using Kelvin
notations. I.e. if the stress tensor σ is represented as a vector s of 6 components:
s(i) with i=1,2,3,4,5 or 6 with:

σ1 = σ11
σ2 = σ22
σ3 = σ33
σ4 =

√
2σ23

σ5 =
√

2σ13
σ6 =

√
2σ12

and if the strain tensor ε s represented by a 6 component vector e:

ε1 = ε11
ε2 = ε22
ε3 = ε33
ε4 =

√
2ε23

ε5 =
√

2ε13
ε6 =

√
2ε12

The stiffness tensor can be represented as the matrix C as follows:
σ1
σ2
σ3
σ4
σ5
σ6

 =


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

 .


ε1
ε2
ε3
ε4
ε5
ε6


25

or: 

σ11
σ22
σ33√
2σ23√
2σ13√
2σ12

 =


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

 .



ε11
ε22
ε33√
2ε23√
2ε13√
2ε12


The upper triangular part of the matrix is entered into CraFT like that:

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

Examples:

#---
behavior of material number 15 is anisotropic linear
elastic (3):
15 3
its stiffness matrix will be entered:
0
stiffness matrix:
13930. 7082 5765 0. 0. 0.

13930. 5765 0. 0. 0.
15010. 0. 0. 0.

6028. 0. 0.
6028. 0.

6828.
#---

B.3.2 case 1: isotropic case

In this case, the behavior of material is supposed to be isotropic linear elasticity.
The user has to enter:

• the Young’s modulus: E

• the Poisson coefficient: ν

26

The stiffness matrix is the calculated as:
λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ


with λ and µ being the Lamé coefficient:

λ = E.ν
(1+ν).(1−2ν)

µ = E
2.(1+ν)

Example:

#---
material nr 32 is an linear elastic material
32 3
... and it is isotropic:
1
Young’s modulus:
10.
Poisson coefficient:
0.23
#---

TO DO: This is redundant with behavior number 1, except that the full
stiffness matrix is calculate and then used to apply the behavior law
instead of using Lamé coefficients.

B.3.3 case 2: cubic symmetry

In the case cubic symmetry, the user has to enter the following parameters:

• bulk modulus K

• µ1

• µ2

the stffness matrix being then calculated as:
(3K + 4µ1)/3 (3K − 2µ1)/3 (3K − 2µ1)/3 0 0 0
(3K − 2µ1)/3 (3K + 4µ1)/3 (3K − 2µ1)/3 0 0 0
(3K − 2µ1)/3 (3K − 2µ1)/3 (3K + 4µ1)/3 0 0 0

0 0 0 2µ2 0 0
0 0 0 0 2µ2 0
0 0 0 0 0 2µ2


27

B.3.4 case 3: hexagonal symmetry

In the case hexagonal symmetry, the user has to enter the following parameters:

• bulk modulus K

• µt
• µl
• El
• νl

the stffness matrix being then calculated as:


K + µt K − µt 2νlK 0 0 0
K − µt K + µt 2νlK 0 0 0
2νlK 2νlK El + 4ν2lK 0 0 0

0 0 0 2µl 0 0
0 0 0 0 2µl 0
0 0 0 0 0 2µt


B.3.5 case 4: orthotropic symmetry

In the case of orthotropic symmetry, the user has to enter the following parame-
ters:

• 3 Young’moduli: E1, E2, E3

• 3 Poisson coefficients: ν12, ν13, ν23

• 3 shear moduli: µ12, µ13, µ23

the stiffness matrix being then calculated as

D.
1−ν223E3/E2

E2E3
D.ν12E2/E1+ν13ν23E3/E1

E2E3
D.ν13E3/E1+ν12ν23E3/E1

E1E2
0 0 0

D.1−ν13.ν13.E3/E1

E1E3
D.ν23.E3/E2+ν12.ν13.E3/E1

E1E3
0 0 0

D.1−ν12ν12E2/E1

E1E2
0 0 0

0 0 0 2µ23 0 0
0 0 0 0 2µ13 0
0 0 0 0 0 2µ12


with:

D = E1.E2.E3/(1− ν23ν23E3/E2 − ν13ν13E3/E1 − ν12ν12E2/E1 − 2ν12ν13ν23E3/E1)

or:

28


E1(1− ν23ν32)/k E1(ν23ν31 + ν21)/k E1(ν21ν32 + ν31)/k 0 0 0
E2(ν13ν32 + ν12)/k E2(1− ν13ν31)/k E2(ν12ν31 + ν32)/k 0 0 0
E3(ν12ν23 + ν13)/k E3(ν13ν21 + ν23)/k E3(1− ν12ν21)/k 0 0 0

0 0 0 2µ23 0 0
0 0 0 0 2µ13 0
0 0 0 0 0 2µ12


with:

k = 1− ν23ν32 − ν12ν21 − ν13ν31 − ν12ν23ν31 − ν21ν32ν13
and:

ν21 = E2/E1.ν12 , ν32 = E3/E2.ν23 , ν31 = E3/E1.ν13

B.4 How to describe an elastic-perfectly-plastic Von Mises material

Behavior identifier: 2

In the case of an elastic-perfectly-plastic material with von Mises yield criterion
(the linear elastic part being supposed to isotropic) the user has to enter the fol-
lowing parameters:

• Young’s modulus

• Poisson coefficient

• Yield stress

The algorithm used is the radial return algorithm.

Example:

#---
material nr 8 is an elastic-perfectly-plastic material
8 2
Young’s modulus:
10.
Poisson coefficient:
0.23
Yield stress:
1.2
#---

B.5 How to describe an elastic-plastic Von Mises material

Behavior identifier: 4

In the case of an elastic-plastic material with von Mises yield criterion and hard-
ening (the linear elastic part being supposed to isotropic) the user has to enter the
following parameters:

29

• Young’s modulus

• Poisson coefficient

• A flag telling the hardening type:

0: without hardening σ0(p) = ys (redundant with Sec. B.4). The user has
then to enter the yield stress ys.

1: with linear hardening σ0(p) = ys +Hp. The yield stress ys and then the
plastic modulus H have to be provided.

2: with tabulated values of the hardening. The dependance of the isotropic
hardening σ0 with respect to the cumulated plastic strain p is specified
through a table. The user has to give the number of points of the table,
then a list of pairs of points defining the isotropic hardening criterion,
for example:

Number of points
4
Pairs of points
(p, sigma0)
0. 10.0
1. 10.1
3. 11.5
5. 12.0

0 1 2 3 4 5 6 7
p

8

9

10

11

12

13

14

σ
0
(p

)

with extrapolation beyond the last pair based on the last segment.

The algorithm used is the radial return algorithm.

Example:

#---
material nr 8 is an elastic-plastic material
without linear hardening
8 4
Young’s modulus:
10.
Poisson coefficient:
0.23
Yield stress:
10
Plastic modulus:
0.3
#---

30

Appendix C Examples

C.1 Examples of loading files

C.1.1 example of creep loading

In the following example of loading specification file, creep loading is prescribed:
macroscopic stress is prescribed (C in the first directive) to be Σ11 = 10 , Σij 6=11 = 0
at time t = 0.1s and following time steps.

#-------------------------------------
prescribed stress
C
#-------------------------------------
loading
t direction k
11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -

0.1 1. 0. 0. 0. 0. 0. 10.
0.2 1. 0. 0. 0. 0. 0. 10.
0.3 1. 0. 0. 0. 0. 0. 10.
0.4 1. 0. 0. 0. 0. 0. 10.
0.5 1. 0. 0. 0. 0. 0. 10.
0.6 1. 0. 0. 0. 0. 0. 10.
0.7 1. 0. 0. 0. 0. 0. 10.
0.8 1. 0. 0. 0. 0. 0. 10.
0.9 1. 0. 0. 0. 0. 0. 10.
1.0 1. 0. 0. 0. 0. 0. 10.

A more concise specification using implied loop notation would be:

#-------------------------------------
prescribed stress
C
#-------------------------------------
loading
t direction k
11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -

0.1 1. 0. 0. 0. 0. 0. 10.
:9: 1.0 1. 0. 0. 0. 0. 0. 10.

Remarks:

- The line for time t = 0.1 is necessary as CraFT implies that macroscopic
stress is null at time t = 0.

- The number of implied loops between t = 0.1 (not included) and t = 1
(included) is 9, thus the implied time step is: 0.1 = (1− 0.1)/9.

Another possibility for the same loading conditions would be:

#-------------------------------------
prescribed stress
C
#-------------------------------------
loading
t direction k
11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -

0.1 1. 0. 0. 0. 0. 0. 10.
%0.1% 1.0 1. 0. 0. 0. 0. 0. 10.

Time steps of implied loops between t = 0.1 and t = 1 being prescribed to 0.1

C.1.2 example of simple traction

In this example, a simple traction is applied in 11 direction (Σ11 6= 0 Σij 6= 11 = 0)
untill E : d = 50 (in other words, untill E11 = 50) at time t = 20; 1000 time steps
are applied.

#-------------------------------------
prescribed direction of stress
S
#-------------------------------------
loading
t direction k
11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -
:1000: 20. 1. 0. 0. 0. 0. 0. 50.

32

